Gemini API का इस्तेमाल करके, कई चरणों में फ़्रीफ़ॉर्म बातचीत बनाई जा सकती है. Firebase AI Logic SDK, बातचीत की स्थिति को मैनेज करके इस प्रोसेस को आसान बनाता है. इसलिए, generateContent()
(या generateContentStream()
) के उलट, आपको बातचीत का इतिहास खुद से सेव करने की ज़रूरत नहीं है.
शुरू करने से पहले
इस पेज पर, सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट और कोड देखने के लिए, Gemini API पर क्लिक करें. |
अगर आपने अब तक ऐसा नहीं किया है, तो शुरू करने से जुड़ी गाइड पढ़ें. इसमें, Firebase प्रोजेक्ट सेट अप करने, अपने ऐप्लिकेशन को Firebase से कनेक्ट करने, SDK टूल जोड़ने, चुने गए Gemini API प्रोवाइडर के लिए बैकएंड सेवा को शुरू करने, और GenerativeModel
इंस्टेंस बनाने का तरीका बताया गया है.
हमारा सुझाव है कि अपने प्रॉम्प्ट की जांच करने और उन पर बार-बार काम करने के लिए, Google AI Studio का इस्तेमाल करें. इससे, जनरेट किया गया कोड स्निपेट भी मिल सकता है.
सिर्फ़ टेक्स्ट वाली चैट की सुविधा जोड़ना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
चैट जैसी कई बार की जाने वाली बातचीत बनाने के लिए, startChat()
को कॉल करके चैट शुरू करें. इसके बाद, उपयोगकर्ता को नया मैसेज भेजने के लिए sendMessage()
का इस्तेमाल करें. इससे मैसेज और जवाब, चैट के इतिहास में जुड़ जाएंगे.
बातचीत में मौजूद कॉन्टेंट से जुड़े role
के लिए, ये दो विकल्प होते हैं:
user
: वह भूमिका जो प्रॉम्प्ट देती है. यह वैल्यू,sendMessage()
को कॉल करने के लिए डिफ़ॉल्ट है. अगर कोई दूसरी भूमिका पास की जाती है, तो फ़ंक्शन एक अपवाद दिखाता है.model
: वह भूमिका जो जवाब देती है. इस भूमिका का इस्तेमाल,history
के साथstartChat()
को कॉल करते समय किया जा सकता है.
Swift
नए उपयोगकर्ता को मैसेज भेजने के लिए, startChat()
और sendMessage()
को कॉल किया जा सकता है:
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")
// Optionally specify existing chat history
let history = [
ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]
// Initialize the chat with optional chat history
let chat = model.startChat(history: history)
// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")
Kotlin
नए उपयोगकर्ता को मैसेज भेजने के लिए, startChat()
और sendMessage()
को कॉल किया जा सकता है:
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash")
// Initialize the chat
val chat = generativeModel.startChat(
history = listOf(
content(role = "user") { text("Hello, I have 2 dogs in my house.") },
content(role = "model") { text("Great to meet you. What would you like to know?") }
)
)
val response = chat.sendMessage("How many paws are in my house?")
print(response.text)
Java
नए उपयोगकर्ता को मैसेज भेजने के लिए, startChat()
और sendMessage()
को कॉल किया जा सकता है:
ListenableFuture
दिखाते हैं.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();
Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();
List<Content> history = Arrays.asList(userContent, modelContent);
// Initialize the chat
ChatFutures chat = model.startChat(history);
// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");
Content message = messageBuilder.build();
// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
नए उपयोगकर्ता को मैसेज भेजने के लिए, startChat()
और sendMessage()
को कॉल किया जा सकता है:
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });
async function run() {
const chat = model.startChat({
history: [
{
role: "user",
parts: [{ text: "Hello, I have 2 dogs in my house." }],
},
{
role: "model",
parts: [{ text: "Great to meet you. What would you like to know?" }],
},
],
generationConfig: {
maxOutputTokens: 100,
},
});
const msg = "How many paws are in my house?";
const result = await chat.sendMessage(msg);
const response = await result.response;
const text = response.text();
console.log(text);
}
run();
Dart
नए उपयोगकर्ता को मैसेज भेजने के लिए, startChat()
और sendMessage()
को कॉल किया जा सकता है:
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');
final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
final response = await chat.sendMessage(prompt);
print(response.text);
Unity
नए उपयोगकर्ता को मैसेज भेजने के लिए, StartChat()
और SendMessageAsync()
को कॉल किया जा सकता है:
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");
// Optionally specify existing chat history
var history = new [] {
ModelContent.Text("Hello, I have 2 dogs in my house."),
new ModelContent("model", new ModelContent.TextPart("Great to meet you. What would you like to know?")),
};
// Initialize the chat with optional chat history
var chat = model.StartChat(history);
// To generate text output, call SendMessageAsync and pass in the message
var response = await chat.SendMessageAsync("How many paws are in my house?");
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
अपने इस्तेमाल के उदाहरण और ऐप्लिकेशन के हिसाब से सही मॉडल चुनने का तरीका जानें.
एक से ज़्यादा बार बातचीत करने की सुविधा का इस्तेमाल करके, इमेज में बदलाव करना और उन्हें बार-बार देखना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
एक से ज़्यादा बार बातचीत करने की सुविधा का इस्तेमाल करके, Gemini मॉडल की मदद से, जनरेट की गई या आपके दी गई इमेज की बार-बार जांच की जा सकती है.
GenerativeModel
इंस्टेंस बनाएं और अपने मॉडल कॉन्फ़िगरेशन में responseModalities: ["TEXT", "IMAGE"]
startChat()
और sendMessage()
को कॉल करें.
Swift
import FirebaseAI
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
let generativeModel = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [.text, .image])
)
// Initialize the chat
let chat = model.startChat()
guard let image = UIImage(named: "scones") else { fatalError("Image file not found.") }
// Provide an initial text prompt instructing the model to edit the image
let prompt = "Edit this image to make it look like a cartoon"
// To generate an initial response, send a user message with the image and text prompt
let response = try await chat.sendMessage(image, prompt)
// Inspect the generated image
guard let inlineDataPart = response.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let uiImage = UIImage(data: inlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
// Follow up requests do not need to specify the image again
let followUpResponse = try await chat.sendMessage("But make it old-school line drawing style")
// Inspect the edited image after the follow up request
guard let followUpInlineDataPart = followUpResponse.inlineDataParts.first else {
fatalError("No image data in response.")
}
guard let followUpUIImage = UIImage(data: followUpInlineDataPart.data) else {
fatalError("Failed to convert data to UIImage.")
}
Kotlin
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig = generationConfig {
responseModalities = listOf(ResponseModality.TEXT, ResponseModality.IMAGE) }
)
// Provide an image for the model to edit
val bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.scones)
// Create the initial prompt instructing the model to edit the image
val prompt = content {
image(bitmap)
text("Edit this image to make it look like a cartoon")
}
// Initialize the chat
val chat = model.startChat()
// To generate an initial response, send a user message with the image and text prompt
var response = chat.sendMessage(prompt)
// Inspect the returned image
var generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
// Follow up requests do not need to specify the image again
response = chat.sendMessage("But make it old-school line drawing style")
generatedImageAsBitmap = response
.candidates.first().content.parts.firstNotNullOf { it.asImageOrNull() }
Java
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI()).generativeModel(
"gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
new GenerationConfig.Builder()
.setResponseModalities(Arrays.asList(ResponseModality.TEXT, ResponseModality.IMAGE))
.build()
);
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide an image for the model to edit
Bitmap bitmap = BitmapFactory.decodeResource(resources, R.drawable.scones);
// Initialize the chat
ChatFutures chat = model.startChat();
// Create the initial prompt instructing the model to edit the image
Content prompt = new Content.Builder()
.setRole("user")
.addImage(bitmap)
.addText("Edit this image to make it look like a cartoon")
.build();
// To generate an initial response, send a user message with the image and text prompt
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(prompt);
// Extract the image from the initial response
ListenableFuture<@Nullable Bitmap> initialRequest = Futures.transform(response, result -> {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
return imagePart.getImage();
}
}
return null;
}, executor);
// Follow up requests do not need to specify the image again
ListenableFuture<GenerateContentResponse> modelResponseFuture = Futures.transformAsync(
initialRequest,
generatedImage -> {
Content followUpPrompt = new Content.Builder()
.addText("But make it old-school line drawing style")
.build();
return chat.sendMessage(followUpPrompt);
},
executor);
// Add a final callback to check the reworked image
Futures.addCallback(modelResponseFuture, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
for (Part part : result.getCandidates().get(0).getContent().getParts()) {
if (part instanceof ImagePart) {
ImagePart imagePart = (ImagePart) part;
Bitmap generatedImageAsBitmap = imagePart.getImage();
break;
}
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, {
model: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: {
responseModalities: [ResponseModality.TEXT, ResponseModality.IMAGE],
},
});
// Prepare an image for the model to edit
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
const fileInputEl = document.querySelector("input[type=file]");
const imagePart = await fileToGenerativePart(fileInputEl.files[0]);
// Provide an initial text prompt instructing the model to edit the image
const prompt = "Edit this image to make it look like a cartoon";
// Initialize the chat
const chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
const result = await chat.sendMessage([prompt, imagePart]);
// Request and inspect the generated image
try {
const inlineDataParts = result.response.inlineDataParts();
if (inlineDataParts?.[0]) {
// Inspect the generated image
const image = inlineDataParts[0].inlineData;
console.log(image.mimeType, image.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
// Follow up requests do not need to specify the image again
const followUpResult = await chat.sendMessage("But make it old-school line drawing style");
// Request and inspect the returned image
try {
const followUpInlineDataParts = followUpResult.response.inlineDataParts();
if (followUpInlineDataParts?.[0]) {
// Inspect the generated image
const followUpImage = followUpInlineDataParts[0].inlineData;
console.log(followUpImage.mimeType, followUpImage.data);
}
} catch (err) {
console.error('Prompt or candidate was blocked:', err);
}
Dart
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
final model = FirebaseAI.googleAI().generativeModel(
model: 'gemini-2.0-flash-preview-image-generation',
// Configure the model to respond with text and images
generationConfig: GenerationConfig(responseModalities: [ResponseModality.text, ResponseModality.image]),
);
// Prepare an image for the model to edit
final image = await File('scones.jpg').readAsBytes();
final imagePart = InlineDataPart('image/jpeg', image);
// Provide an initial text prompt instructing the model to edit the image
final prompt = TextPart("Edit this image to make it look like a cartoon");
// Initialize the chat
final chat = model.startChat();
// To generate an initial response, send a user message with the image and text prompt
final response = await chat.sendMessage([
Content.multi([prompt,imagePart])
]);
// Inspect the returned image
if (response.inlineDataParts.isNotEmpty) {
final imageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
// Follow up requests do not need to specify the image again
final followUpResponse = await chat.sendMessage([
Content.text("But make it old-school line drawing style")
]);
// Inspect the returned image
if (followUpResponse.inlineDataParts.isNotEmpty) {
final followUpImageBytes = response.inlineDataParts[0].bytes;
// Process the image
} else {
// Handle the case where no images were generated
print('Error: No images were generated.');
}
Unity
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a Gemini model that supports image output
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "gemini-2.0-flash-preview-image-generation",
// Configure the model to respond with text and images
generationConfig: new GenerationConfig(
responseModalities: new[] { ResponseModality.Text, ResponseModality.Image })
);
// Prepare an image for the model to edit
var imageFile = System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "scones.jpg"));
var image = ModelContent.InlineData("image/jpeg", imageFile);
// Provide an initial text prompt instructing the model to edit the image
var prompt = ModelContent.Text("Edit this image to make it look like a cartoon.");
// Initialize the chat
var chat = model.StartChat();
// To generate an initial response, send a user message with the image and text prompt
var response = await chat.SendMessageAsync(new [] { prompt, image });
// Inspect the returned image
var imageParts = response.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D texture2D = new(2, 2);
if (texture2D.LoadImage(imageParts.First().Data.ToArray())) {
// Do something with the image
}
// Follow up requests do not need to specify the image again
var followUpResponse = await chat.SendMessageAsync("But make it old-school line drawing style");
// Inspect the returned image
var followUpImageParts = followUpResponse.Candidates.First().Content.Parts
.OfType<ModelContent.InlineDataPart>()
.Where(part => part.MimeType == "image/png");
// Load the image into a Unity Texture2D object
UnityEngine.Texture2D followUpTexture2D = new(2, 2);
if (followUpTexture2D.LoadImage(followUpImageParts.First().Data.ToArray())) {
// Do something with the image
}
अपने इस्तेमाल के उदाहरण और ऐप्लिकेशन के हिसाब से सही मॉडल चुनने का तरीका जानें.
जवाब स्ट्रीम करना
इस सैंपल को आज़माने से पहले, अपने प्रोजेक्ट और ऐप्लिकेशन को सेट अप करने के लिए, इस गाइड का शुरू करने से पहले सेक्शन पूरा करें. इस सेक्शन में, आपको अपनी पसंद के Gemini API सेवा देने वाली कंपनी के लिए बटन पर भी क्लिक करना होगा, ताकि आपको इस पेज पर सेवा देने वाली कंपनी से जुड़ा कॉन्टेंट दिखे. |
मॉडल जनरेशन के पूरे नतीजे का इंतज़ार किए बिना, तेज़ी से इंटरैक्शन हासिल किए जा सकते हैं. इसके बजाय, कुछ नतीजों को मैनेज करने के लिए स्ट्रीमिंग का इस्तेमाल करें.
जवाब को स्ट्रीम करने के लिए, sendMessageStream()
को कॉल करें.
तुम और क्या कर सकती हो?
- मॉडल को लंबे प्रॉम्प्ट भेजने से पहले, टोकन की गिनती करने का तरीका जानें.
- Cloud Storage for Firebase को सेट अप करें, ताकि आप अपने कई मोड वाले अनुरोधों में बड़ी फ़ाइलें शामिल कर सकें. साथ ही, प्रॉम्प्ट में फ़ाइलें उपलब्ध कराने के लिए, बेहतर तरीके से मैनेज किया जा सके. फ़ाइलों में इमेज, PDF, वीडियो, और ऑडियो शामिल हो सकते हैं.
-
प्रोडक्शन की तैयारी शुरू करें (प्रोडक्शन की चेकलिस्ट देखें). इसमें ये चीज़ें शामिल हैं:
- Gemini API को बिना अनुमति वाले क्लाइंट के गलत इस्तेमाल से बचाने के लिए, Firebase App Check सेट अप करना
- Firebase Remote Config को इंटिग्रेट करना, ताकि ऐप्लिकेशन का नया वर्शन रिलीज़ किए बिना, ऐप्लिकेशन में वैल्यू (जैसे, मॉडल का नाम) अपडेट की जा सकें.
अन्य सुविधाएं आज़माएं
- सिर्फ़ टेक्स्ट वाले प्रॉम्प्ट से टेक्स्ट जनरेट करें.
- इमेज, PDF, वीडियो, और ऑडियो जैसी अलग-अलग फ़ाइल टाइप के लिए प्रॉम्प्ट करके टेक्स्ट जनरेट करें.
- टेक्स्ट और मल्टीमोडल प्रॉम्प्ट, दोनों से स्ट्रक्चर्ड आउटपुट (जैसे कि JSON) जनरेट करें.
- टेक्स्ट प्रॉम्प्ट (Gemini या Imagen) से इमेज जनरेट करें.
- जनरेटिव मॉडल को बाहरी सिस्टम और जानकारी से कनेक्ट करने के लिए, फ़ंक्शन कॉल का इस्तेमाल करें.
कॉन्टेंट जनरेशन को कंट्रोल करने का तरीका जानें
- प्रॉम्प्ट के डिज़ाइन को समझना. इसमें सबसे सही तरीके, रणनीतियां, और प्रॉम्प्ट के उदाहरण शामिल हैं.
- मॉडल पैरामीटर कॉन्फ़िगर करें. जैसे, तापमान और ज़्यादा से ज़्यादा आउटपुट टोकन (Gemini के लिए) या आसपेक्ट रेशियो और व्यक्ति जनरेशन (Imagen के लिए).
- सुरक्षा सेटिंग का इस्तेमाल करें, ताकि आपको ऐसे जवाब न मिलें जो नुकसान पहुंचा सकते हैं.
इस्तेमाल किए जा सकने वाले मॉडल के बारे में ज़्यादा जानें
अलग-अलग कामों के लिए उपलब्ध मॉडल, उनके कोटे, और कीमत के बारे में जानें.Firebase AI Logic के साथ अपने अनुभव के बारे में सुझाव/राय देना या शिकायत करना